a2 United States Patent

Crossley et al.

US009483505B2

US 9,483,505 B2
Nov. 1, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

VERSIONING FOR CONFIGURATIONS OF
REUSABLE ARTIFACTS

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Nicholas D. J. Crossley, Costa Mesa,
CA (US); Troy R. Dugger, Keller, TX
(US); David J. Honey, Crookham
Village (GB); Samuel Sung-Ok Lee,
Irvine, CA (US); Schuyler B.
Matthews, Cary, NC (US); Darcy L.
Wiborg Weber, Mission Viejo, CA
(US)

Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 265 days.

Appl. No.: 13/837,559
Filed: Mar. 15, 2013

Prior Publication Data

US 2014/0279974 Al Sep. 18, 2014

Int. CL.

GOG6F 17/30 (2006.01)

GOGF 17/00 (2006.01)

U.S. CL

CPC e GO6F 17/30309 (2013.01)
Field of Classification Search

CPC ... GOG6F 8/71; GOGF 8/65, GO6F 2201/84,

GOGF 17/30233; GOGF 12/0246; GOGF
17/30067, GOGF 17/30088; GO6F 17/30197,
GOG6F 11/1471; GO6F 2201/815; GOGF
2212/7202; GOGF 8/75; GOGF 11/1076;
GOG6F 11/1435; GOGF 11/1464; GOGF
11/2023; GOGF 11/205

400

USPC ottt 707/695
TPC it GO6F 17/30,17/00
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,649,200 A 7/1997 Leblang et al.
5,805,889 A 9/1998 Van De Vanter
5,881,292 A 3/1999 Sigal et al.

(Continued)

FOREIGN PATENT DOCUMENTS

Jp 2007226376 A 9/2000
Jp 2007128450 5/2007
(Continued)

OTHER PUBLICATIONS

Vieira, M. et al., “Integrating GQM and Data Warchousing for the
Definition of Software Reuse Metrics”, In Software Engineering
Workshop (SEW), 2011 34th IEEE, pp. 112-116, IEEE, 2011.

(Continued)

Primary Examiner — Yicun Wu
(74) Attorney, Agent, or Firm — Cuenot, Forsythe &
Kim, LLC

(57) ABSTRACT

Arrangements described herein relate to versioning configu-
rations of reusable artifacts. An artifact baseline correspond-
ing to the present version of a first artifact can be created.
Responsive to creating that artifact baseline, the present
version of the first artifact, and present versions of children
artifacts of the present version of the first artifact, are made
immutable. Responsive to identifying a change to the pres-
ent version of the first artifact, a new version of the first
artifact can be automatically created, wherein the new
version of the first artifact is mutable.

14 Claims, 5 Drawing Sheets

Create an artifact baseline corresponding to a present version of a first artifact
405

Responsive to creating the first artifact baseline, by a processor, make the present]
version of the first artifact, and present versions of children artifacts of the
present version of the first artifact, immutable

l

Responsive to identifying a change to the present version of the first artifact, ora
change to at least one child artifact of the present version of the first artifact,
automatically create a new version of the first artifact, wherein the new version
of the first artifact is mutable
415

]

Automatically create a new version for each parent artifact of the first artifact,
wherein the new version of each parent artifact is a mutable
420

]

Responsive to a user input, make the new version of the first artifact immutable

US 9,483,505 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

6,021,415 A 2/2000 Cannon et al.
6,460,052 B1* 10/2002 Thomas et al. 707/695

6,681,382 Bl 1/2004 Kakumani et al.

6,904,454 B2 6/2005 Stickler

7,085,768 B2 8/2006 Scott et al.

7,322,024 B2 1/2008 Carlson et al.

7,322,025 B2 1/2008 Reddy et al.

7,587,568 B2 9/2009 Muthulingam et al.

7,631,006 B2 12/2009 Hagstrom et al.

7,644,392 B2 1/2010 Geipel et al.

7,895,563 B2 2/2011 Carlson et al.

8,122,067 B2 2/2012 Scott et al.

8,175,936 B2 5/2012 Ronen et al.

8,230,387 B2 7/2012 Srivastava et al.

8,909,875 Bl * 12/2014 Ostapovicz GOG6F 3/0608
711/108

9,223,813 B2 12/2015 Crossley et al.

9,268,805 B2 2/2016 Crossley et al.

9,275,089 B2 3/2016 Crossley et al.

2003/0033590 Al
2003/0115223 Al
2003/0208490 Al
2006/0282480 Al
2006/0288054 Al
2007/0255765 Al
2007/0265862 Al
2008/0133558 Al
2008/0320496 Al
2009/0083268 Al
2009/0171971 Al
2010/0153912 Al
2010/0153917 Al
2011/0010687 Al
2011/0167042 Al
2012/0054219 Al
2012/0096425 Al
2015/0046415 Al
2015/0074067 Al
2015/0074643 Al

2/2003 Leherbauer
6/2003 Scott et al.
11/2003 Larrea et al.
12/2006 Johnson et al.
12/2006 Johnson et al.
11/2007 Robinson
11/2007 Freund et al.
6/2008 Carlson et al.
12/2008 Barinov et al.
3/2009 Coqueret et al.
7/2009 Goddard et al.
6/2010 Porras et al.
6/2010 Kramer et al.
1/2011 Plante
7/2011 Moore, Ir. et al.
3/2012 Narendra et al.
4/2012 Gupta et al.
2/2015 Crossley et al.
3/2015 Crossley et al.
3/2015 Crossley et al.

FOREIGN PATENT DOCUMENTS

JP 4786998 B2
WO 2008133977 Al

10/2011
11/2008

OTHER PUBLICATIONS

Babu, K.M., et al., “Searching Technique in Retrieving Software
Reusable Components from a Repository”, [Online] International
Journal of Scientific and Research Publications, 2012 [retrieved
Feb. 7, 2012], retrieved from the Internet: <http://www.ijsrp.org/
research__paper_ feb2012/ijsrp-feb-2012-23.pdf>, 3 pg.

White, J. et al., “Automating Product-Line Variant Selection for
Mobile Devices”, In Proc. of 11th Int’l. Software Product Line
Conference (SPLC ’07), IEEE © 2007, 10 pg.

“Performing Common Database Storage Tasks”, [Online] In Oracle
Databse 2 Day DBA 11g Release 1 (11.1) Part No. B28301-03 ©
2004, 2008, Jul. 2007 [retrieved Sep. 20, 2012] retrieved from the

Internet: <http://isu.ifmo.ru/docs/doc111/server.111/b28301/stor-
age003 htm#BABHGIAG>, 10 pg.

“Reclaiming Unused Space in Datafiles”, [Online] Oracle-Base,
ORACLE-BASE.com © 2000, 2013 [retrieved Aug. 8, 2013],
retrieved from the Internet: <www.oracle-base.com/articles/misc/
reclaiming-unused-space.php>, 7 pg.

“StarTeam Best Practices—The StarTeam Model”, [Online] Fox
Consult © 1993-2013 [retrieved Aug. 8, 2013], <http://www.
foxdata.com/starteam/best_ practices/the_starteam__model.htm>,
28 pg.

Van Gurp, J.,“Variability in Software Systems: The Key to Software
Reuse” [Online] Licentiate Theses, University of Groningen, Swe-
den, Oct. 2000, 194 pg.

Beuche, D., “What’s the difference? A Closer Look at Configuration
Management for Product Lines” [Online] Product Line Engineering
Blog, Mar. 13, 2010 [retrieved Aug. 8, 2013], retrieved from the
Internet: <http://productlines.wordpress.com/2010/03/13/whats-
the-difference-a-closer-look-at-configuration-management-for-
product-lines/>, 4 pg.

Holtman, K. et al., “RFC 2296—HTTP Remote Variant Selection
Algorithm—RSVA/1.0”, [Online] Network Working Group, Mar.
1998 [retrieved Aug. 8, 2013], retrieved from the Internet: <http://
tools.ietf.org/html/rfc2296>, 14 pg.

“Variant Selection Criteria”, [Online] IBM Mobile Portal Accelera-
tor, Multichannel Server, IBM Corp. [retrieved Jul. 31, 2013]
<http://pic.dhe.ibm.com/infocenter/mpadoc/v6rlm0/index.
jsp?topic=%2Fcom.volantis.mcs.eclipse.
doc%2Fcomponents%2Fasset__selection_ criteria.html>, 2 pg.
White, J. et al., “Automatically composing reusable software com-
ponents for mobile devices”, In Journal of Brazilian Computer
Society, vol. 14, No. 1, Mar. 2008 [retrieved Aug. 8, 2013], retrieved
from the Internet: <http://www.scielo.br/scielo.php?script=sci_ art-
text&pid=S0104-65002008000100004>, 26 pg.

Hopp, W. J. et al., “Product Line Selection and Pricing with
Modularity in Design”, In Manufacturing & Service Operations
Mgmt., vol. 7, No. 3, Summer 2005, pp. 172-187.

Lucia, A.D. et al., “Recovering traceability links in software artifact
management systems using information retrieval methods”, ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 16, No. 4, Art. 13, Sep. 2007, 50 pgs.

Novakouski, M. et al., “Best Practices for Artifact Versioning in
Service-Oriented Systems”, Carnegie Mellon Software Engineering
Institute, Technical Note CMU/SEI-2011-TN-009, Jan. 2012, 42
pgs.

U.S. Appl. No. 14/022,884, Non-Final Office Action, Apr. 23, 2015,
10 pg.

U.S. Appl. No. 14/231,054, Non-Final Office Action, Apr. 23, 2015,
14 pg.

U.S. Appl. No. 14/523,400, Non-Final Office Action, Mar. 24, 2015,
8 pg.

U.S. Appl. No. 14/231,054, Notice of Allowance, Nov. 9, 2015, 10
pg.

Estublier, J. et al., “Impact of Software Engineering Research on the
Practice of Software Configuration Management,” ACM Trans. on
Software Engineering and Methodology (TOSEM), vol. 14, No. 4,
pp. 383-430, Oct. 2005, retrieved from the Internet: <http://dl.acm.
org/citation.cfm?id=1101817>.

U.S. Appl. No. 14/022,884, Notice of Allowance, Oct. 23, 2015, 9

pg.

* cited by examiner

U.S. Patent Nov. 1, 2016 Sheet 1 of 5 US 9,483,505 B2

100
110
N~ 2012 Sedan, version 12
130 120
~ ~~ 3| E500 Engine, version 3
w
\
\
\
134 132 \
— “ AN
\
\
\
\
\
138 136 N
N N— \
1 2 3 | E500 Engine

\

\

|

[

I

150 _ /

N 2012 SUV, version 8/

//
P I
160 120 -
N 3 : :
E500 Engine, version 3
164 162
]]

168 166
] —

FIG. 1

U.S. Patent Nov. 1, 2016 Sheet 2 of 5 US 9,483,505 B2

200
110
- 2012 Sedan, version 12
7130 120 1
7 \f%:l E500 Engine, version 3
/
/ 134 1 32_Iﬁi_|
/ il

\
\
\ 138_]|§J_—| 136_%, \202
\

\» 130 120 (3
\';.;:I E500 Engine, version 3

Mgy m
LEGEND
138\% 136 ﬁ 9 Mutable
e

] Immutable

FIG. 2

Sheet 3 of 5 US 9,483,505 B2

U.S. Patent Nov. 1, 2016

300

110
2012 Sedan, version 12
130 120
:I E500 Engine, version 3
|

wh ey
] N
\
\
138\%' 136 %I N
~—] \
1 > 2 » 3 » 4 | E500 Engine
I
I
/

//El | 2012 Sedan, version 13 p
i & 302

310
130 320 P
el .
E500 Engine, version 4
8] M
LEGEND
138\% 136\% T Mutable
3 Tmmutable

FIG. 3

U.S. Patent Nov. 1, 2016 Sheet 4 of 5 US 9,483,505 B2

400

Create an artifact bascline corresponding to a present version of a first artifact
405

Responsive to creating the first artifact bascline, by a processor, make the present
version of the first artifact, and present versions of children artifacts of the
present version of the first artifact, immutable
410

Responsive to identifying a change to the present version of the first artifact, or a
changc to at lcast onc child artifact of the present version of the first artifact,
automatically create a new version of the first artifact, wherein the new version
of the first artifact is mutable
415

A 4

Automatically create a new version for each parent artifact of the first artifact,
wherein the new version of cach parent artifact is a mutable
420

A 4

Responsive to a user input, make the new version of the first artifact immutable
425

FIG. 4

U.S. Patent Nov. 1, 2016 Sheet 5 of 5 US 9,483,505 B2

500
Display Pomt‘lng Keyboard Network
530 Device 540 Adapter

535 545
4 4 4
System Bus
515
2
4 \ 4
Processor Local Memory
505 520
Bulk Storage

FIG. 5

Memory Elements
510

Device
525

Configuration

Management

System
550

US 9,483,505 B2

1
VERSIONING FOR CONFIGURATIONS OF
REUSABLE ARTIFACTS

BACKGROUND

Creating applications or systems from reusable compo-
nents is common as a means to accelerate the delivery of
solutions and reduce cost. Tracking the evolution of systems
over time requires versioning, both for individual units of
data and for configurations. The use of versioning provides
the ability to view the history of individual units of data and
compare any two versions of data to identify the changes
between them, and the ability to view the history of a
configuration to see how the data has changed over time.
Today, the primary means of managing and tracking evolu-
tion of a system is via a configuration management system.
A configuration management system requires a user to
manually manage workspaces, and manually check out and
check in data, assign new versions to the data, etc.

BRIEF SUMMARY

One or more embodiments disclosed within this specifi-
cation relate to versioning configurations of reusable arti-
facts.

An embodiment can include a method of versioning
configurations of reusable artifacts. The method can include
creating an artifact baseline corresponding to a present
version of a first artifact. The method also can include,
responsive to creating the artifact baseline, by a processor,
making the present version of the first artifact, and present
versions of children artifacts of the present version of the
first artifact, immutable. The method further can include,
responsive to identifying a change to the present version of
the first artifact, automatically creating a new version of the
first artifact, wherein the new version of the first artifact is
mutable.

Another embodiment can include a system having a
processor. The processor can be configured to initiate
executable operations including creating an artifact baseline
corresponding to a present version of a first artifact. The
executable operations also can include, responsive to creat-
ing the artifact baseline, making the present version of the
first artifact, and present versions of children artifacts of the
present version of the first artifact, immutable. The execut-
able operations further can include, responsive to identifying
a change to the present version of the first artifact, auto-
matically creating a new version of the first artifact, wherein
the new version of the first artifact is mutable.

Another embodiment can include a computer program
product for versioning configurations of reusable artifacts.
The computer program product can include a computer-
readable storage medium having stored thereon program
code that, when executed, configures a processor to perform
a method including creating, by the processor, an artifact
baseline corresponding to a present version of a first artifact.
The method also can include, responsive to creating the first
artifact baseline, by the processor, making the present ver-
sion of the first artifact, and present versions of children
artifacts of the present version of the first artifact, immu-
table. The method further can include, responsive to iden-
tifying a change to the present version of the first artifact,
automatically creating, by the processor, a new version of
the first artifact, wherein the new version of the first artifact
is mutable.

10

15

20

25

30

35

40

45

50

55

60

2
BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a block diagram illustrating components a
system comprising a plurality of reusable artifacts in accor-
dance with one embodiment disclosed within this specifi-
cation.

FIG. 2 is another block diagram illustrating components
of the system comprising a plurality of reusable artifacts in
accordance with one embodiment disclosed within this
specification.

FIG. 3 is another block diagram illustrating components
of the system comprising a plurality of reusable artifacts in
accordance with one embodiment disclosed within this
specification.

FIG. 4 is a flow chart illustrating a method of versioning
configurations of reusable artifacts in accordance with
another embodiment disclosed within this specification.

FIG. 5 is a block diagram illustrating a processing system
for versioning configurations of reusable artifacts in accor-
dance with one embodiment disclosed within this specifi-
cation.

DETAILED DESCRIPTION

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in
one or more computer-readable medium(s) having com-
puter-readable program code embodied, e.g., stored,
thereon.

Any combination of one or more computer-readable
medium(s) may be utilized. The computer-readable medium
may be a computer-readable signal medium or a computer-
readable storage medium. The phrase “computer-readable
storage medium” means a non-transitory storage medium. A
computer-readable storage medium may be, for example,
but not limited to, an electronic, magnetic, optical, electro-
magnetic, infrared, or semiconductor system, apparatus, or
device, or any suitable combination of the foregoing. More
specific examples (a non-exhaustive list) of the computer-
readable storage medium would include the following: an
electrical connection having one or more wires, a portable
computer diskette, a hard disk drive (HDD), a solid state
drive (SSD), a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), a
digital versatile disc (DVD), an optical storage device, a
magnetic storage device, or any suitable combination of the
foregoing. In the context of this document, a computer-
readable storage medium may be any tangible medium that
can contain, or store a program for use by or in connection
with an instruction execution system, apparatus, or device.

A computer-readable signal medium may include a propa-
gated data signal with computer-readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A

US 9,483,505 B2

3

computer-readable signal medium may be any computer-
readable medium that is not a computer-readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

Program code embodied on a computer-readable medium
may be transmitted using any appropriate medium, includ-
ing but not limited to wireless, wireline, optical fiber, cable,
RF, etc., or any suitable combination of the foregoing.
Computer program code for carrying out operations for
aspects of the present invention may be written in any
combination of one or more programming languages,
including an object oriented programming language such as
Java™, Smalltalk, C++ or the like and conventional proce-
dural programming languages, such as the “C” program-
ming language or similar programming languages. The
program code may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer, or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer, other programmable data pro-
cessing apparatus, or other devices create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.

These computer program instructions may also be stored
in a computer-readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function in a particular manner, such that the
instructions stored in the computer-readable medium pro-
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide
processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

For purposes of simplicity and clarity of illustration,
elements shown in the figures have not necessarily been
drawn to scale. For example, the dimensions of some of the
elements may be exaggerated relative to other elements for
clarity. Further, where considered appropriate, reference
numbers are repeated among the figures to indicate corre-
sponding, analogous, or like features.

10

15

20

25

30

35

40

45

50

55

60

65

4

Arrangements described herein relate to versioning con-
figurations of reusable artifacts. A baseline for such artifacts
can be established, which can cause such artifacts to be
immutable. The baseline can include a version of a first
artifact and versions of other artifacts that are children
and/or parents of the first artifact. When the first artifact, or
at least one of the children of the artifact, is changed, a new
version of the artifact can be created. If a child artifact has
changed, a new version of the child artifact also can be
created. These versions can be mutable, at least until a new
baseline is established.

The versioning can be supported with an object model
that supports a containment relationship between various
versions of the artifacts, and any version of an artifact can
be reused. For example, a child artifact can be associated
with any number of parent artifacts within an artifact hier-
archy. When an artifact is made immutable, for example by
establishing a new baseline, all children of the artifact also
can be made immutable, for example from a point in the
hierarchy representing the artifact down through the children
of the artifact. Thus, locating various configurations that
contain a same version of an artifact is possible. To change
the artifact, a new version of the artifact (and/or parents of
the artifact) can be created.

Several definitions that apply throughout this document
will now be presented.

As used herein, the term “artifact” means a computer-
based structure created for a practical purpose. An artifact
can, for instance, comprise information (e.g., data) pertain-
ing to a product (e.g., an article of manufacture, an appli-
cation, a service, a system, or the like). Examples of an
artifact include, but are not limited to, a product identifica-
tion, a product specification, a drawing (e.g., a computer-
aided design (CAD) drawing), a bill of materials, a proce-
dure, computer-program code (e.g., a modules, routine,
sub-routine, or the like), marketing material, and the like.
Another example of an artifact is an artifact associated with
one or more other artifacts, such as parent and/or child
artifact.

In illustration, artifacts can be associated with one another
in a hierarchy comprising a first parent artifact having one or
more children artifacts, and one or more of the children
artifacts themselves can be parent artifacts to other children
artifacts. For example, a parent artifact can be a product
identification, and the parent artifact can be associated with
children artifacts corresponding to the product, for example
a product specification, identifiers for components of the
product (e.g., a bill of materials), drawings of the product,
drawings of components of the product, etc. An artifact
which is a parent to other artifacts also can be a child artifact
to its parent artifact. For example, an artifact can be an
identifier for a component of the product, and thus be a child
artifact to the artifact representing the product, but also have
children artifacts, for example drawings, specifications, etc.
for the component, and children artifacts for sub-compo-
nents of the component, and so on.

As used herein, the term ““baseline” means a state of at
least one version of an artifact in a particular immutable
version.

As used herein, the term “immutable” means not change-
able to a present version of an artifact. For example, if a first
version of an artifact is immutable, a change to the first
version of the artifact cannot be saved to that first version of
the artifact. Instead, to save a change to the first version of
the artifact, at least a second version of the artifact must be
created to save the change. When an artifact is immutable,

US 9,483,505 B2

5

changes to children of the artifact also cannot be made
without creating a new version of the artifact.

As used herein, the term “mutable” means changeable to
apresent version of an artifact. For example, if a first version
of an artifact is mutable, changes may be made to that
version without creating a new version of the artifact.
Changes also may be made to children of the artifact.
Moreover, children of the artifact can be disassociated from
and the artifact and/or additional children can be associated
with the artifact.

FIG. 1 is a block diagram illustrating components 100 of
a system comprising a plurality of reusable artifacts in
accordance with one embodiment disclosed within this
specification. Such artifacts, and their relationships, can be
maintained by a suitable configuration management system.

The components 100 can include an artifact 110, which
may be a parent artifact for a particular product (e.g., a 2012
Sedan, version 12), and various children artifacts 120, 130,
132, 134, 136, 138. In this example, the artifact 110 may
represent an identity and/or a bill of materials for the 2012
Sedan, version 12. The artifact 120 may represent an E500
engine, version 3, used in the 2012 Sedan, version 12, and
thus be a child artifact of the artifact 110. The artifacts
130-138 can represent any other suitable artifacts that are
children artifacts of the artifact 110. Further, the artifact 130,
though being a child of the artifact 110, can be a parent to
the artifacts 132, 134, 136, 138. Similarly, the artifact 134,
though being a child of the artifact 130, can be a parent to
the artifacts 136, 138. In this regard, FIG. 100 presents the
artifacts 110, 120, 130-138 in a hierarchy based on parent
child relationships.

The components 100 also include an artifact 150, which
may be a parent artifact for a particular product (e.g., a 2012
SUV, version 8), and various children artifacts 120, 160,
162, 164, 166, 168. In this regard, FIG. 100 presents the
artifacts 150, 120, 160-168 in a hierarchy based on parent
child relationships.

In this example, the artifact 150 may represent an identity
and/or a bill of materials for the 2012 SUV, version 8. The
artifacts 160-168 can represent any other suitable artifacts
that are children artifacts to the artifact 110. The artifact 120
may represent the same E500 engine, version 3, used in the
2012 SUV, version 8, and thus not only be a child artifact of
the artifact 150, but also be a child artifact to the artifact 110.
In this regard, the artifact 120 can represent the same ES00
engine used in the 2012 Sedan, version 12. Thus, both the
artifact 110 and the artifact 150 can share, as a child artifact,
the same artifact 120. Thus, the artifact 120 is a reusable
artifact, being used both by the artifact 110 and the artifact
150. The artifact 120 can have associated therewith one or
more children artifacts (not shown). By virtue of their
association with the artifact 120, such other artifacts can be
associated with the artifacts 110, 150, and thus also be
considered to be reusable.

FIG. 2 is another block diagram illustrating components
200 of the system comprising a plurality of reusable artifacts
in accordance with one embodiment disclosed within this
specification. In this example, the artifacts 110, 120, 130,
134 may initially be mutable in a first version of the artifact
110. Other artifacts 132, 136, 138 may be immutable at this
point, as shown in an upper portion 202 of FIG. 2. At some
point in time, a user can select the artifact 110 to create an
artifact baseline corresponding to the artifact 110 (e.g., for
the 2012 Sedan, version 12), represented by the decision line
204. Responsive to the artifact baseline being created, via a
processor, the artifact 110, as well as the artifacts 120, 130,

10

15

20

25

30

35

40

45

50

55

60

65

6

132, 134, can be made to be immutable, as shown in the
lower portion 206 of FIG. 2. The artifacts 132, 136, 138 can
remain immutable.

FIG. 3 is another block diagram illustrating components
300 of the system comprising a plurality of reusable artifacts
in accordance with one embodiment disclosed within this
specification. In this example, a user may choose to modify
the artifact 120, which is immutable because it is included
in a baseline for one or more products. For instance, a user
may choose to revise the ES500 engine, version 3, for
example by checking out that artifact 120. After making
changes to the artifact, the user may attempt to check back
in the artifact 120 with the changes made by the user.

Since the artifact 120 is immutable, the user can be
prompted to create a new version (e.g. version 4) of the E500
engine. If the user declines, the user’s revisions need not be
saved in the components 300. If, however, the user agrees to
create the new version of the engine, a new version (e.g.,
version 4) can be automatically created and saved in the
components 300, as represented by decision line 302. When
this occurs, a new artifact 320 can be automatically created
for the ES00 engine, version 4, and can be automatically
associated with a new artifact 310 created for, and associated
with, the 2012 Sedan. In this regard, the changes creating the
artifact 320 can be automatically cause the artifact 310 to be
created, and the artifact can be automatically associated with
(e.g., propagated) to the artifact 310.

The artifact 310 can be a parent artifact to the artifact 320.
Since the engine has been revised, the artifact 310 can
represent a new version of the 2012 sedan, for instance
version 13. Also, the artifacts 310, 320 can be made mutable
until a new baseline for the artifact 310 and/or artifact 320
is established. Nonetheless, all relationships between the
artifacts 110, 120 and the artifacts 130-138 can be retained,
and promulgated to, for the artifacts 310, 320. In other
words, the artifacts 310, 320 can maintain the relationships
with the artifacts 130-138 previously established by the
artifacts 110, 120. Nonetheless, while the artifacts 310, 320
are mutable, children of the artifacts 310, 320 can be
disassociated from the artifacts 310, 320, or additional
children can be associated with the artifacts 310, 320, for
example in response to one or more user inputs.

Further, referring to FIGS. 1 and 3, since the artifact 120
also is associated with the artifact 150 (e.g., for the 2012
SUV), when the artifact 120 is modified to create the artifact
320, a new version (not shown) of the artifact 150 also can
be created, and that new version can be associated with the
artifact 320. The new version of the artifact 150 also can be
made mutable until a new baseline for that new version of
the artifact 150 and/or the artifact 320 is created. Again, all
relationships between the artifact 320, the new version of the
artifact 150, and the artifacts 160-166 can be maintained.
Nonetheless, while the new version of the artifact 150 is
mutable, additional children can be associated with, or
children can be disassociated from, the new version of the
artifact 150.

Such operations can be transparent to the user. Accord-
ingly, the user need only agree that the artifact be created
and/or included in the components 300, and all processing to
create the new version can be automatically implemented.
Moreover, associations between respective versions can be
automatically established. Thus, the user, or other users,
easily can review the relationships between different ver-
sions of the artifacts to identify changes that were made.

To make changes to a particular artifact, such as the
artifact 120, the artifact can be checked out of a configura-
tion management system. Moreover, parent artifacts (e.g.

US 9,483,505 B2

7
artifacts, 110, 150) also can be checked out. When the
artifact (or the parent artifact 110, 150) is checked back in,
the user can be prompted to choose whether to create a new
version. If the user chooses to do so, the system can be
updated as described. If the user chooses not to, the system
need not be updated, and the artifact need not be imple-
mented in the system. For example, the user can choose to
keep the artifact as a work in progress without creating a
new version that is applied in the system or establishing a
new baseline. The user can check the artifact 120 back in, for
example as the artifact 320, at any time desired by the user.

When a new baseline for the artifact 310 and/or artifact
320 is established, the components 300 can be automatically
updated accordingly to make the artifact 310 and/or artifact
320 immutable as described with respect to FIG. 2. For
example, the artifact 310 for the 2012 sedan, version 13, can
be established. Further, referring to FIG. 1, the artifact 120
associated with the artifact 150 for the 2012 SUV can be
automatically updated with the ES00 engine, version 4, and
the artifact 150 for the 2012 SUV can be automatically
updated to version 9, representing the inclusion of the
updated E500 engine.

FIG. 4 is a flow chart illustrating a method 400 of
versioning configurations of reusable artifacts in accordance
with another embodiment disclosed within this specification.
At step 405, an artifact baseline corresponding to a present
version of a first artifact can be created. At step 410,
responsive to creating that artifact baseline, by a processor,
the present version of the first artifact, and present versions
of children artifacts of the present version of the first artifact,
can be made immutable.

At step 415, responsive to identifying a change to the
present version of the first artifact, or a change to at least one
child artifact of the present version of the first artifact, a new
version of the first artifact can be automatically created,
wherein the new version of the first artifact is mutable. At
step 420, a new version for each parent artifact of the first
artifact can be automatically created, wherein the new
version of each parent artifact is mutable. At step 425,
responsive to a user input, the new version of the first artifact
can be made immutable. Further, each child artifact of the
new version of the first artifact also can be made immutable.
For example, a new artifact baseline corresponding to the
new version of the first artifact can be created. In response
to the artifact baseline being created, the new version of the
first artifact, and its children artifacts, can be made immu-
table.

FIG. 5 is a block diagram illustrating a processing system
500 for versioning configurations of reusable artifacts in
accordance with one embodiment disclosed within this
specification.

The processing system 500 can include at least one
processor 505 (e.g., a central processing unit) coupled to
memory elements 510 through a system bus 515 or other
suitable circuitry. As such, the processing system 500 can
store program code within the memory elements 510. The
processor 505 can execute the program code accessed from
the memory elements 510 via the system bus 515. It should
be appreciated that the processing system 500 can be imple-
mented in the form of any system including a processor and
memory that is capable of performing the functions and/or
operations described within this specification. For example,
the processing system 500 can be implemented as a com-
puter (e.g., a server, a workstation, a mobile computer, a
laptop computer, a tablet computer, or the like), a computing
appliance, and so on.

20

25

35

40

45

55

8

The memory elements 510 can include one or more
physical memory devices such as, for example, local
memory 520 and one or more bulk storage devices 525.
Local memory 520 refers to RAM or other non-persistent
memory device(s) generally used during actual execution of
the program code. The bulk storage device(s) 525 can be
implemented as a hard disk drive (HDD), solid state drive
(SSD), or other persistent data storage device. The process-
ing system 500 also can include one or more cache memo-
ries (not shown) that provide temporary storage of at least
some program code in order to reduce the number of times
program code must be retrieved from the bulk storage device
525 during execution.

Input/output (I/0O) devices such as a display 530, a point-
ing device 535 and, optionally, a keyboard 540 can be
coupled to the processing system 500. The 1/O devices can
be coupled to the processing system 500 either directly or
through intervening I/O controllers. For example, the dis-
play 530 can be coupled to the processing system 500 via a
graphics processing unit (GPU), which may be a component
of the processor 505 or a discrete device. One or more
network adapters 545 also can be coupled to processing
system 500 to enable processing system 500 to become
coupled to other systems, computer systems, remote print-
ers, and/or remote storage devices through intervening pri-
vate or public networks. Modems, cable modems, transceiv-
ers, and Ethernet cards are examples of different types of
network adapters 545 that can be used with processing
system 500.

As pictured in FIG. 5, the memory elements 510 can store
a configuration management system 550 that performs the
processes and methods described herein. Being imple-
mented in the form of executable program code, the con-
figuration management system 550 can be executed by the
processing system 500 and, as such, can be considered part
of the processing system 500. Moreover, the configuration
management system 550 is a functional data structure that
imparts functionality when employed as part of the process-
ing system 500 of FIG. 5.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out
of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a,” “an,” and “the” are intended to include the plural forms
as well, unless the context clearly indicates otherwise. It will
be further understood that the terms “includes,” “including,”
“comprises,” and/or “comprising,” when used in this speci-

US 9,483,505 B2

9

fication, specify the presence of stated features, integers,
steps, operations, elements, and/or components, but do not
preclude the presence or addition of one or more other
features, integers, steps, operations, elements, components,
and/or groups thereof.

Reference throughout this specification to “one embodi-
ment,” “an embodiment,” or similar language means that a
particular feature, structure, or characteristic described in
connection with the embodiment is included in at least one
embodiment disclosed within this specification. Thus,
appearances of the phrases “in one embodiment,” “in an
embodiment,” and similar language throughout this speci-
fication may, but do not necessarily, all refer to the same
embodiment.

The term “plurality,” as used herein, is defined as two or
more than two. The term “another,” as used herein, is
defined as at least a second or more. The term “coupled,” as
used herein, is defined as connected, whether directly with-
out any intervening elements or indirectly with one or more
intervening elements, unless otherwise indicated. Two ele-
ments also can be coupled mechanically, electrically, or
communicatively linked through a communication channel,
pathway, network, or system. The term “and/or” as used
herein refers to and encompasses any and all possible
combinations of one or more of the associated listed items.
It will also be understood that, although the terms first,
second, etc. may be used herein to describe various ele-
ments, these elements should not be limited by these terms,
as these terms are only used to distinguish one element from
another unless stated otherwise or the context indicates
otherwise.

The term “if” may be construed to mean “when” or
“upon” or “in response to determining” or “in response to
detecting,” depending on the context. Similarly, the phrase
“if it is determined” or “if [a stated condition or event] is
detected” may be construed to mean “upon determining” or
“in response to determining” or “upon detecting [the stated
condition or event]” or “in response to detecting [the stated
condition or event],” depending on the context.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the embodiments disclosed within this specification have
been presented for purposes of illustration and description,
but are not intended to be exhaustive or limited to the form
disclosed. Many modifications and variations will be appar-
ent to those of ordinary skill in the art without departing
from the scope and spirit of the embodiments of the inven-
tion. The embodiments were chosen and described in order
to best explain the principles of the invention and the
practical application, and to enable others of ordinary skill
in the art to understand the inventive arrangements for
various embodiments with various modifications as are
suited to the particular use contemplated.

What is claimed is:

1. A system comprising:

a processor programmed to initiate executable operations

comprising:

creating, from a present version of a first artifact which is

mutable, an artifact baseline corresponding to the pres-
ent version of a first artifact;

responsive to creating the artifact baseline, making the

present version of the first artifact, and present versions
of children artifacts of the present version of the first
artifact, immutable; and

10

15

20

25

30

35

40

45

50

55

60

65

10

responsive to identifying a user request to check-in the
present version of the first artifact with at least one
change made to the present version of the artifact,
automatically creating a new version of the first artifact
including the at least one change, wherein the new
version of the first artifact is mutable, and saving the
new version of the artifact.

2. The system of claim 1, the executable operations
further comprising:

automatically creating a new version for each parent

artifact of the first artifact, wherein the new version of
each parent artifact is mutable.

3. The system of claim 2, the executable operations
further comprising:

associating the new version of the first artifact with the

new version of each parent of the first artifact.

4. The system of claim 1, wherein creating the new
version of the first artifact comprises:

creating the new version of the first artifact to retain all

relationships established between the present version of
the first artifact and all other artifacts with which the
present version of the first artifact is associated.

5. The system of claim 1, the executable operations
further comprising:

responsive to a user input, associating at least one child

artifact with, or disassociating at least one child artifact
from, the new version of the first artifact when the new
version of the first artifact is mutable.

6. The system of claim 1, the executable operations
further comprising:

responsive to a user input, creating a new artifact baseline

corresponding to the new version of the first artifact;
and

responsive to creating the new artifact baseline, making

the new version of the first artifact immutable.

7. The system of claim 6, the executable operations
further comprising:

responsive to creating the new artifact baseline, making

each child artifact of the new version of the first artifact
immutable.
8. A computer program product for versioning configu-
rations of reusable artifacts, the computer program product
comprising a computer readable storage medium having
program code stored thereon, the program code executable
by a processor to perform a method comprising:
creating, by the processor, from a present version of a first
artifact which is mutable, an artifact baseline corre-
sponding to the present version of a first artifact;

responsive to creating the artifact baseline, by the pro-
cessor, making the present version of the first artifact,
and present versions of children artifacts of the present
version of the first artifact, immutable; and

responsive to identifying a user request to check-in the
present version of the first artifact with at least one
change made to the present version of the artifact,
automatically creating, by the processor, a new version
of the first artifact including the at least one change,
wherein the new version of the first artifact is mutable,
and saving the new version of the artifact.

9. The computer program product of claim 8, the method
further comprising:

automatically creating, by the processor, a new version for

each parent artifact of the first artifact, wherein the new
version of each parent artifact is mutable.

10. The computer program product of claim 9, the method
further comprising:

US 9,483,505 B2

11

associating, by the processor, the new version of the first
artifact with the new version of each parent of the first
artifact.
11. The computer program product of claim 8, wherein
creating the new version of the first artifact comprises:
creating the new version of the first artifact to retain all
relationships established between the present version of
the first artifact and all other artifacts with which the
present version of the first artifact is associated.
12. The computer program product of claim 8, the method
further comprising:
responsive to a user input, by the processor, associating at
least one child artifact with, or disassociating at least
one child artifact from, the new version of the first
artifact when the new version of the first artifact is
mutable.
13. The computer program product of claim 8, the method
further comprising:
responsive to a user input, by the processor, creating a
new artifact baseline corresponding to the new version
of the first artifact; and
responsive to creating the new artifact baseline, by the
processor, making the new version of the first artifact
immutable.
14. The computer program product of claim 13, the
method further comprising:
responsive to creating the new artifact baseline, by the
processor, making each child artifact of the new version
of the first artifact immutable.

#* #* #* #* #*

20

25

30

12

